Etiqueta: Info-Trading

La Prodigiosa Economía de las Ideas

La Prodigiosa Economía de las Ideas

Si yo te doy un euro y tu a mi me das otro, al final terminamos los dos con un euro, exactamente igual de como empezamos.

Pero si yo te doy una idea y tú a mí me das otra, al final tenemos dos ideas cada uno. En términos económicos, ambos hemos doblado nuestro capital.

Eso es un buen negocio y el resto, paparruchas.

Este blog pretende TRAFICAR en ideas.

Los «Es Peor» de la Información

Los «Es Peor» de la Información

Es peor tener MALA información que NO tener información, porque la mala información te hace tomar malas decisiones.

Es peor tener DEMASIADA información que NO tener información, porque crea la falsa sensación de estar bien informado cuando, simplemente, estas saturado, aturdido e infoxicado.

No necesitas MUCHA información, sino POCA y FIABLE. Con eso basta para tomar buenas decisiones.

Jugar Bien Tus Cartas

Jugar Bien Tus Cartas

Hay poca verdad en los mercados y NULA en la actividad del trading.

De hecho, como ya he publicado en alguna ocasión, opino que la principal función de los Mercados es la de GENERAR CONFUSIÓN para ocultar los datos relevantes. Ya que, según las propias reglas del mercado, la verdad debe existir como variable en el sistema, los mercados generan una cantidad ingente de ruido para ocultarla. Los pocos que son capaces de reconocerla e identificarla son los que tienen alguna posibilidad de enriquecerse.

Considero a los mercados como el sistema de información humano más complejo jamás creado.

Descubrir, aislar y catalogar la escasa verdad fluyente y filtrar el ruido y la mentira [deliberada o no] es algo que merece la categoría de RETO. ¡Me encanta! Me siento como una mezcla a partes iguales del Sam Spade en “El Halcón Maltés y del John Forbes Nash novelado en “Una Mente Maravillosa”, escribiendo sobre los cristales los principios del Equilibrio de Nash y la Teoría de los Juegos.

Me gusta el trading especialmente porque considero a los Mercados como el sistema de información humano más complejo jamás creado y eso es un DESAFÍO APASIONANTE. Es mi propio laboratorio de ideas.

Para mí, el trading es un juego estadístico donde las certezas no existen y sólo se trabaja con probabilidades. Para entendernos, para mí es más parecido al Póker o al Black Jack [o al dominó, en versión más hispánica] que a la ruleta o a la lotería.

Si estuviéramos ante un juego de azar puro como la lotería, todo se basaría en la suerte. Todos tenemos las mismas opciones al comprar un número y acertar el premio mayor no tiene mayor mérito. Le toca a quien le toca y si juegas más, tienes proporcionalmente más probabilidades.

Analizar los mercados desde el punto de vista de la gestión de la información, es como entender cómo gestiona sus cartas un experimentado jugador de póquer.

Pero convendremos todos que, independientemente del oponente, en un juego como el póquer [o dominó o la mayor parte de juegos como los antes enunciados] un jugador novel tiene muchas menos opciones de ganar que uno experimentado. ¿Quiere eso decir que el experimentado ganará siempre? Tampoco. Está el factor azar sigue presente en las bazas que se le presenten en cada partida y momento. La diferencia es que, con ellas en la mano, sabe gestionarlas mejor que el novato. Incluso sabe cuándo es conveniente NO jugar y dar una mano por perdida.

Por eso mi orientación es analizar los mercados desde el punto de vista de la gestión de la información, del mismo modo que intentaría entender cómo gestiona sus cartas un experimentado jugador, sean las cartas que sean las que le llegan en la mano.

Al final, ganar con una pareja de doses en el póquer, o en el dominó cargado de dobles, es una hazaña al alcance sólo de jugadores experimentados.

Sobre Fuentes Fiables y Fuentes Contaminadas

Sobre Fuentes Fiables y Fuentes Contaminadas

Dentro de los muchos derivados aplicados a la Teoría Matemática de la Información [TI] originariamente propuesta por Shannon y Weaver, uno de los aspectos desarrollados fue el de la catalogación de las fuentes de datos.

Por no alargarme innecesariamente, la importancia de escoger las fuentes de datos adecuadas es [como parece obvio] básico para poder después hacer un análisis correcto de los datos y obtener respuestas veraces a las preguntas propuestas.

Para resumirlo, en un esfuerzo máximo de simplificación, se dividieron la fuentes en dos únicos tipos, las denominadas FUENTES VERACES y las FUENTES CONTAMINADAS. Para que sea más fácilmente entendible lo trasladaré directamente al campo de los Mercados, tal y como yo lo entiendo y aplico desde hace años.

Como FUENTES VERACES entendemos aquellas que nos proporcionan informaciones PÚBLICASÚNICAS y UNÍVOCAS. Son accesibles para todos, y para todos tienen un mismo valor en un mismo momento. Esas fuentes [en nuestro caso y en esencia] serían las cinco básicas: máximo, mínimo, apertura, cierre y volumen.

Como «fuentes veraces» entendemos aquellas que son directamente accesibles para todos, y para todos tienen un mismo valor en un mismo momento.

Como FUENTES CONTAMINADAS entendemos [siempre desde la perspectiva de la TI] cualquier dato no obtenido de manera directa. Por poner un ejemplo, si obtenemos la temperatura de una determinada estancia a través de un sensor homologado y conectado directamente a nuestro equipo de proceso, la fuente es veraz; pero si enviamos a un ayudante a observar la temperatura en una pantalla y nos la comunica, la fuente pasa a estar CONTAMINADA, y todos los resultados posteriores estarían en cuestión, aunque el dato sea correcto.

Así, cualquier fuente que interprete, module o retransmita la información desde su origen, la contamina y, en consecuencia, deberemos descartarla [o tener este hecho muy en cuenta].

Con esta visión tan estricta de la calificación de las fuentes, la TI se cura en salud, pues pone en cuestión cualquier tipo de información que no sea directamente verificable por todos los observadores a un tiempo. Con ello elimina de la ecuación tanto los errores, como la información manipulada en beneficio de algo o de alguien.

Cualquier fuente que interprete, module o retransmita la información desde su origen, la contamina

La información manipulada no tiene por qué ser estrictamente falsa. La «buena» información manipulada puede ser correcta [o casi] en sus datos, pero también puede ser muy tergiversada en la presentación interpretación de los mismos porque, para la mayoría, importa mucho más la interpretación de los datos que los datos en sí, cosa que, lógicamente la TI cuestiona.

Desde ese estricto punto de vista [quizás equivocado, pero metódico] habrá que descartar las informaciones suministradas por los medios de comunicación [TODOS, desde los diarios especializados hasta las redes sociales, pasando por éste desde el que ahora mismo yo estoy opinando], así como también las suministradas directamente por los actores económicos [empresas, sectores o países], por ser datos interesados suministrados por parte; con lo que el análisis fundamental (AF) quedaría fuera del ámbito de cualquier estudio ni remotamente basado en la TI.

Para la mayoría, importa mucho más la interpretación de los datos que los datos en sí, cosa que, lógicamente la TI cuestiona

Desde el punto de vista de la TI, el gran truco de los mercados financieros no es tanto la ocultación de los datos, sino el de la saturación de información [infoxicación], mezclando muchas fuentes, casi todas ellas contaminadas [interpretadas, opinadas y/o interesadas] creando una tremenda confusión [ruido] capaz de ocultar las trazas de las fuentes veraces [señal] y dificultando su interpretación.

Realmente, desde el punto de vista de la TI, en esos mercados que aparentemente bullen de información, las fuentes veraces y fiables son muy escasas.

No Se Trata Tanto de los Datos…

No Se Trata Tanto de los Datos…

No se trata tanto de los datos, sino de cómo los leas.

Y te lo voy a demostrar.

Mismas letras, mismo código, diferente ordenación:

  • On es atart otnat ed sol sotad, onis ed omóc sol seal.

Mismo código, misma ordenación, menor cantidad de señal:

  • N s trt tnt d ls dts, sn d cm ls ls.

Introduciendo ruido blanco:

  • Nhoh shhe trhahta tahntho dhe hlohs hdhathohs, shihnho deh cóhmoh hlhohs lehahsh.

O introduciendo ruido gris:

  • dNrtoyusyeptverua,tla;tawxnitotde;l.oiupswdxauitzxo-s,suyi4n3ogdehtceómptolohsllhea,ahsñ.

El mercado aporta señal, pero está lleno de ruido. En el mejor de los supuestos, se puede parecer bastante a este último ejemplo, donde TODAS las letras y palabras están incluidas y en el orden adecuado, pero el nivel de ruido es tan alto que es casi imposible interpretar el mensaje original.

Códigos originales de la famosa máquina Enigma

¿Crees que todo esto es un simple divertimento? ¿Crees que no tiene nada que ver contigo y con el trading? Pues yo creo que lo tiene, y mucho. Y, si lo piensas un poco, seguro que a ti también te lo parecerá.

Por eso hay que trabajar en nuevas formas de visualizar esos datos, para separar los relevantes de los que no lo son; para aislar y anular el ruido al máximo posible.

Tendencia es a Señal como Volatilidad a Ruido

Tendencia es a Señal como Volatilidad a Ruido

Hoy les voy a proponer una aplicación simple de los conceptos básicos de la Teoría de la Información [TI] sobre el análisis gráfico tradicional, una de las muchas que, basadas en esta metodología, somos capaces de hacer, y que cuestionan aspectos del AT tradicional.

Desde el punto de vista del análisis gráfico, la Regresión Lineal [RL] es la forma de aproximación estadísticamente más correcta a un conjunto de valores.

Por lo tanto, desde el punto de vista de la TI, hacer esto sería mucho más correcto que andar tirando líneas uniendo mínimos o máximos, que no son valores medios sino extremos y, precisamente por ello, estadísticamente poco significativos.

Los canales de desviación típica y de error típico deberían ser la herramienta utilizada para dibujar canales y no ese método -pido perdón por la expresión- hoy en día ya rupestre y sin fundamento lógico de hacerlo trazando paralelas desde máximos o mínimos.

Viendo el trazado y la pendiente de la RL de un tramo concreto de cotización, los traders lo identificaríamos con la TENDENCIA [sería matemáticamente más correcto], y desde el punto de vista de la TI estaríamos contemplando la SEÑAL.

Al mismo tiempo, los desplazamientos a ambos lados de la RL podríamos visualizar los efectos del RUIDO, desviando la cotización real de la señal pura. Sin ser exactamente lo mismo, podríamos asociarlo con lo que los traders generalmente asociamos con el concepto de VOLATILIDAD.

Más o menos, lo veríamos así:

senyal_ruido

Sería observar los mismos elementos bajo otros parámetros. Este tipo de visión alternativa fue la que, ya hace años, hizo que me plantease el diseño de algunas nuevas herramientas de trading que la mayoría de ustedes ya conocen y han tenido oportunidad de probar directamente.

El Modelo TI en el Trading

El Modelo TI en el Trading

Cuando hace ya bastantes años llegué al mundo del trading, no pude por menos que observar algunos paralelismos entre la estructura del trading [del e-trading, para ser más exactos] y ciertas partes de la Teoría Matemática de la Información [TI] según el Modelo de Shannon/Weaver.

Para empezar, este es el modelo básico de comunicación según la TI:

Observemos que, según esta arquitectura básica, hay algunos conceptos que merecen especial atención. A un lado tenemos la Fuente de información (mercado) y, en el extremo opuesto estamos nosotros mismos, los traders, como receptores y destinatarios de la misma.

El eslabón intermedio de la cadena (Transmisor y Receptor), así como la codificación, son ahora mismo íntegramente por vía telemática y digital, gracias a la popularización de la red [el e-trading del que antes hablábamos].

Por último, tenemos un último factor que la TI ya contempla como fundamental: el Ruido, como elemento distorsionador interpuesto. Como pronto veremos, el ruido tiene en el trading (y desde este punto de vista metodológico) especial relevancia, así como diferentes orígenes y causas, algunas accidentales y otras claramente provocadas.

Shannon y la Teoría Matemática de la Información

Shannon y la Teoría Matemática de la Información

Bueno, esto no es nada fácil. De un blog se espera que el autor sea breve y ameno, y seguramente este no es un tema apropiado para explicar aquí con detalle pero, al menos, podemos probarlo. Intentaré empezar por el principio e ir al grano.

¿La razón de todo esto? Explicar hasta qué punto la Teoría de la Información (TI) me parece aplicable como metodología al estudio del funcionamiento de los mercados financieros y al trading.

La Teoría de la Información [TI] fue formulada a finales de la década de 1940 por el ingeniero y matemático Claude Elwood Shannon. En su origen esta teoría se refería solo a las condiciones técnicas en la transmisión de mensajes. Su primera versión apareció publicada en el Bell System Technical Journal en octubre de 1948, perteneciente a la Bell Telephone Laboratories, organización para la que Shannon trabajaba.

Muy poco después el sociólogo Warren Weaver acertó a entrever todo el potencial subyacente en el trabajo de Shannon y redacto un ensayo, que fue publicado junto al texto anterior en julio de 1949 bajo el título de «The Mathematical Theory of Communication«.

Click para descargar en PDF

En conjunto dieron lugar a un pequeño libro. De este modo, la unión de dos disciplinas diferentes produjo una obra de referencia duradera en el campo de la comunicación, entendido en el más amplio sentido. Lo habitual es que se aluda a estas concepciones como el Modelo de Shannon y Weaver, o como la Teoría de la Información [TI].

Este trabajo es de una excepcional importancia en el campo de la cibernética, siendo una de las obras de referencia básica. Shannon contempló por primera vez la transmisión de información como una teoría matemática dentro del campo específico de la probabilidad y la estadística, estudiando la información y todo lo relacionado con ella: canales, compresión de datos, criptografía y temas relacionados.

En la próxima entrega, un poco más sobre Shannon, su teoría y su relación con los mercados financieros. [Por cierto, si quieren conocer el original, basta con que pulsen sobre la imagen de la portada del libro para obtener un PDF de la obra]

InfoTrading: Para Traders del S. XXI

InfoTrading: Para Traders del S. XXI

Podríamos llamarlo InfoTrading [Informational Trading o Inversión Informacional, en español]. El nombre seguramente ni siquiera sea importante, pero sí su objetivo, que sería estudiar el trading como análisis del flujo de datos y su correcta gestión.

No me refiero tanto a técnicas como el HFT [High Frequency Trading], interesantes pero muy alejadas de nosotros, traders de a pie. Lejos de ello, desde el principio me interesó descubrir hasta dónde podía llegar con las herramientas y plataformas disponibles para el usuario medio del trading.

La aplicación a la operativa bursátil de conceptos generales que nuevas disciplinas como la infonomía [gestión avanzada de la información] o las derivadas aplicativas de la Teoría de la Información (TI) aportan nuevas visiones y posibilidades a los postulados tradicionales del trading.

Mi trabajo de diseño aplicativo [la vertiente práctica de estas teorías] se basa en inferir de esos datos alguna nueva información que ayude en el trading diario.

Atacar los fundamentos de cualquier disciplina es una práctica bastante suicida. Lo sé y lo prudente [y lo cómodo] sería callar, porque ya me he ganado alguna descalificación de fondo.

En mi favor pesa que me importa un rábano. Yo no tengo ningún prestigio que defender, ni como analista, ni como gestor profesional, ni nada por el estilo. Me da absolutamente igual.

Por poner un ejemplo [de grueso calibre, pero suficientemente claro], el consenso general opina que la operativa en los mercados está básicamente relacionada con la economía, sus conceptos, sus noticias y sus ciclos. Después de muchos años, estoy convencido que el trading es básicamente un complejo problema de gestión de los flujos de información, y que los expertos mediáticos vienen a justificar a posteri cualquier movimiento en cualquier sentido.

La base es saber diferenciar los datos veraces de los que no lo son, y a operar sólo en función a los provenientes de las fuentes más fiables. Mi trabajo de diseño aplicativo [la vertiente práctica de estas teorías] se basa en inferir de esos datos alguna nueva información que ayude en el trading diario.

La aplicación en la operativa bursátil de conceptos de nuevas disciplinas como la infonomía o las derivadas aplicativas de la Teoría de la Información (TI) aportan nuevas visiones y posibilidades al trading.

Pero, ¿de verdad a alguien le interesa esto? Por lo general, a la mayor parte de los traders lo único que les interesa es qué comprar hoy y qué vender mañana. Lógico, pero triste. Sólo quieren información, el conocimiento [a la mayoría] les tiene sin cuidado, aunque es precisamente el conocimiento [y no la información] lo que los convertirá en traders consistentes.

Hoy, para acabar, les dejo con una de mis postulados de cabecera. Es la llamada Hipótesis de Lloyd y se la debemos a Seth Lloyd, catedrático de Ingeniería Mecánica en el Instituto de Tecnología de Massachusets (MIT), donde trabaja en problemas relacionados con los sistemas complejos [desde el Universo a los átomos] y la información. La Hipótesis de Lloyd enuncia que:

“Todo lo que merece la pena ser entendido de un sistema complejo, puede ser entendido en términos de cómo procesa información”

El Factor «Imbécil»

El Factor «Imbécil»

«Disfruta el día hasta que un imbécil te lo arruine.» Woody Allen

Según la teoría de Dow, «toda información se descuenta en los mercados y se refleja en los precios«. Esto que Charles Henry Dow (1851–1902) ya intuyó a finales del siglo XIX y que sentó las bases del análisis técnico, lo confirma también el análisis de los mercados como flujos de información.

Convencido de ello uno intenta identificar variables, diseñar algoritmos y proporcionar adecuadamente representaciones gráficas para crear heramientas que ayuden al trader a tomar decisiones adecuadas. Entonces sale un imbécil de corbata de seda, dice una chorrada y el mercado cae un 4% en dos minutos.

Sí, si lo miras en temporalidades más largas, el «factor imbécil» queda diluido y minimizado entre el resto, y vuelve a dar la razón a Dow y a Shannon.

Lo que no entiendo es por qué hay tal cantidad de imbéciles con incontinencia verbal en puestos de responsabilidad. Y, lo peor, no sé cómo programar la variable «imbécil de turno» en mis herramientas. Me disculpo por ello.